Functional Relationship between Skull Form and Feeding Mechanics in Sphenodon, and Implications for Diapsid Skull Development

نویسندگان

  • Neil Curtis
  • Marc E. H. Jones
  • Junfen Shi
  • Paul O'Higgins
  • Susan E. Evans
  • Michael J. Fagan
چکیده

The vertebrate skull evolved to protect the brain and sense organs, but with the appearance of jaws and associated forces there was a remarkable structural diversification. This suggests that the evolution of skull form may be linked to these forces, but an important area of debate is whether bone in the skull is minimised with respect to these forces, or whether skulls are mechanically "over-designed" and constrained by phylogeny and development. Mechanical analysis of diapsid reptile skulls could shed light on this longstanding debate. Compared to those of mammals, the skulls of many extant and extinct diapsids comprise an open framework of fenestrae (window-like openings) separated by bony struts (e.g., lizards, tuatara, dinosaurs and crocodiles), a cranial form thought to be strongly linked to feeding forces. We investigated this link by utilising the powerful engineering approach of multibody dynamics analysis to predict the physiological forces acting on the skull of the diapsid reptile Sphenodon. We then ran a series of structural finite element analyses to assess the correlation between bone strain and skull form. With comprehensive loading we found that the distribution of peak von Mises strains was particularly uniform throughout the skull, although specific regions were dominated by tensile strains while others were dominated by compressive strains. Our analyses suggest that the frame-like skulls of diapsid reptiles are probably optimally formed (mechanically ideal: sufficient strength with the minimal amount of bone) with respect to functional forces; they are efficient in terms of having minimal bone volume, minimal weight, and also minimal energy demands in maintenance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skull shape and feeding strategy in Sphenodon and other Rhynchocephalia (Diapsida: Lepidosauria).

The Rhynchocephalia are a group of small diapsid reptiles that were globally distributed during the early Mesozoic. By contrast, the only extant representatives, Sphenodon punctatus and S. guntheri (Tuatara), are restricted to New Zealand off-shore islands. The Rhynchocephalia are widely considered to be morphologically uniform but research over the past 30 years has revealed unexpected phenoty...

متن کامل

Ontogeny of respiration and feeding structures of skull in Persian sturgeon, Acipenser persicus (Bordin, 1897)

In the present study, the process of the skull development and calcification in Persian sturgeon (Acipenser persicus) was studied. Development of cartilage started after hatching around the head and notochord (10.6 mm, total length, TL) and the first calcification process occurred in dermopalatine and dentary bone jaw coincident with mixing feeding. The appearance of dermal skeletal on the body...

متن کامل

Predicting muscle activation patterns from motion and anatomy: modelling the skull of Sphenodon (Diapsida: Rhynchocephalia).

The relationship between skull shape and the forces generated during feeding is currently under widespread scrutiny and increasingly involves the use of computer simulations such as finite element analysis. The computer models used to represent skulls are often based on computed tomography data and thus are structurally accurate; however, correctly representing muscular loading during food redu...

متن کامل

Integrated diversification of locomotion and feeding in labrid fishes.

An organism's performance of any ecological task involves coordination of multiple functional systems. Feeding performance is influenced by locomotor abilities which are used during search and capture of prey, as well as cranial mechanics, which affect prey capture and processing. But, does this integration of functional systems manifest itself during evolution? We asked whether the locomotor a...

متن کامل

Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome.

We provide phylogenetic analyses for primary Reptilia lineages including, for the first time, Sphenodon punctatus (tuatara) using data from whole mitochondrial genomes. Our analyses firmly support a sister relationship between Sphenodon and Squamata, which includes lizards and snakes. Using Sphenodon as an outgroup for select squamates, we found evidence indicating a sister relationship, among ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011